Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Physiol Plant ; 176(2): e14300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629194

RESUMO

The flower bud differentiation plays a crucial role in cherry yield and quality. In a preliminary study, we revealed the promotion of spermidine (Spd) in bud differentiation and quality. However, the molecular mechanism underlying Spd regulating cherry bud differentiation remains unclear. To address this research gap, we cloned CpSPDS2, a gene that encodes Spd synthase and is highly expressed in whole flowers and pistils of the Chinese cherry (cv. 'Manaohong'). Furthermore, an overexpression vector with this gene was constructed to transform tobacco plants. The findings demonstrated that transgenic lines exhibited higher Spd content, an earlier flowering time by 6 d, and more lateral buds and flowers than wild-type lines. Additionally, yeast one-hybrid assays and two-luciferase experiments confirmed that the R2R3-MYB transcription factor (CpMYB44) directly binds to and activates the CpSPDS2 promoter transcription. It is indicated that CpMYB44 promotes Spd accumulation via regulating CpSPDS2 expression, thus accelerating the flower growth. This research provides a basis for resolving the molecular mechanism of CpSPDS2 involved in cherry bud differentiation.


Assuntos
Prunus , Espermidina , Espermidina/metabolismo , Tabaco/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Prunus/genética , Flores/fisiologia
2.
Cancer Sci ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508217

RESUMO

N6-Methyladenosine (m6A) is a important process regulating gene expression post-transcriptionally. Programmed death ligand 1 (PD-L1) is a major immune inhibitive checkpoint that facilitates immune evasion and is expressed in tumor cells. In this research we discovered that Wilms' tumor 1-associated protein (WTAP) degradation caused by ubiquitin-mediated cleavage in cancer cells (colorectal cancer, CRC) under hypoxia was inhibited by Pumilio homolog 1 (PUM1) directly bound to WTAP. WTAP enhanced PD-L1 expression in a way that was m6A-dependent. m6A "reader," Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) identified methylated PD-L1 transcripts and subsequently fixed its mRNA. Additionally, we found that T-cell proliferation and its cancer cell-killing effects were prevented by overexpression of WTAP in vitro and in vivo. Overexpression prevented T cells from proliferating and killing CRC by maintaining the expression of PD-L1. Further evidence supporting the WTAP-PD-L1 regulatory axis was found in human CRC and organoid tissues. Tumors with high WTAP levels appeared more responsive to anti-PD1 immunotherapy, when analyzing samples from patients undergoing treatment. Overall, our findings demonstrated a novel PD-L1 regulatory mechanism by WTAP-induced mRNA epigenetic regulation and the possible application of targeting WTAP as immunotherapy for tumor hypoxia.

3.
Int J Biol Macromol ; 263(Pt 2): 130346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403208

RESUMO

The DOF (DNA binding with one finger) has multiple functions in plants. However, it has received little attention in the research field of cherries. In this study, the evolutionary relationship and molecular characterization of DOF in four cherry species were analyzed, revealing its expression pattern in sweet cherry. There are 23 members in Prunus avium cv. 'Tieton', 88 in Prunus cerasus, 53 in Cerasus × yedoensis, and 27 in Cerasus serrulata. Most of these genes are intron-less or non-intron, with a conserved C2-C2 domain. Due to heterozygosity and chromosomal ploidy, whole-genome duplication (WGD) events occur to varying degrees, and DOF genes are contracted during evolution. Furthermore, these genes are affected by purifying selection pressure. Under low-temperature treatment, the expression of PavDOF2 and PavDOF18 were significantly up-regulated, while that of PavDOF16 is significantly down-regulated. The expression of PavDOF9, PavDOF12, PavDOF14, PavDOF16, PavDOF17, PavDOF18, and PavDOF19 exhibits an increasing trend during flower development and varies during sweet cherry fruit development. PavDOF1, PavDOF8, PavDOF9, and PavDOF15 are localized in the nucleus but is not transcriptionally active. The findings systemically demonstrate the molecular characteristics of DOF in different cherry varieties, providing a basis for further research on the functions of these genes.


Assuntos
Prunus avium , Prunus , Prunus avium/genética , Frutas/metabolismo , Prunus/genética
4.
Environ Sci Pollut Res Int ; 31(6): 8751-8767, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180660

RESUMO

Eco-industrial parks are the real-world implementation of green supply chain management. There is a growing need to include the circular economy concept into supply chain management as a means of striking a better economic, social, and environmental balance, as the importance of the external sustainability of the supply chain is challenging. Using 357 questionnaires filled out by enterprises in China's eco-industrial parks, we examine the connections and causal relationships between resource efficiency, environmental impact, green supply chain management, and circular economy. To learn how a green supply chain's circular economy affects resource efficiency and environmental performance in the China region, this study makes use of the instrumental variable approach (structure equation model (SEM)). The results of this study indicate that environmentally responsible supply chain management and circular economy have beneficial effects on environmental performance and resource efficiency. The management of the GSC has a negative and small impact on economic performance, although each of the components is a substantial contributor to better performance in the environment. Conclusions from this study will assist those responsible for making decisions within supply chains in developing a plan that is useful for increasing a company's performance along economic and environmental dimensions. This study not only broadens our understanding of the factors that influence green supply chain management but also offers theoretical direction for the implementation of successful green production practices by businesses located in eco-industrial parks.


Assuntos
Meio Ambiente , Desenvolvimento Sustentável , Indústrias , Eficiência , China
5.
Plant Cell Rep ; 43(1): 7, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133822

RESUMO

KEY MESSAGE: Sweet cherry PavbHLH106 was up-regulated under cold induction and overexpressed to enhance the cold resistance in tobacco by mediating the scavenging of ROS through increasing of antioxidant enzyme activity. Sweet cherry (Prunus avium L.) is an economically important fruit. Chilling requirements are critical during dormancy, but abnormally low temperatures unfavorably affect fruit growth and development. Differences were found in the transcript level of PavbHLH106 under salt, dehydration, and low-temperature treatments, especially in response to cold stress, suggesting that this gene is involved in the regulation of different abiotic stresses. PavbHLH106 is homologous to Arabidopsis thaliana AtbHLH106 with a conserved bHLH domain, and transient expression in tobacco suggests that the protein is localized in the nucleus and has transcriptional activity in yeast. The PavbHLH106 overexpression in tobacco resulted in weaker electrolyte leakages, lower malondialdehyde, and higher proline content than the wild type at low-temperature treatment. Reactive oxygen species accumulation was significantly reduced in the overexpressed lines, negatively correlated with the antioxidant enzyme activity. In addition, overexpression of PavbHLH106 delayed the germination of tobacco seeds and promoted plant growth. Resistance-related genes were expressed more in the overexpressed plants compared to the wild type. PavbHLH106 bound to the PavACO promoter in yeast and potentially interacted with a bHLH162-like transcription factor. These results indicate that PavbHLH106 has various functions and is particularly active in controlling low-temperature stress.


Assuntos
Arabidopsis , Prunus avium , Resposta ao Choque Frio/genética , Prunus avium/genética , Prunus avium/metabolismo , Antioxidantes , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
6.
BMC Plant Biol ; 23(1): 652, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110865

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) gene family is one of plants' largest transcription factor families. It plays an important role in regulating plant growth and abiotic stress response. RESULTS: In this study, we determined that the PavbHLH28 gene participated in cold resistance. The PavbHLH28 gene was located in the nucleus and could be induced by low temperature. Under the treatment of ABA, PEG, and GA3, the transcript level of PavbHLH28 was affected. At low temperature, overexpression of the PavbHLH28 gene enhanced the cold resistance of plants with higher proline content, lower electrolyte leakage (EL) and malondialdehyde (MDA) content. Compared with the WT plants, the transgenic plants accumulated fewer reactive oxygen species (ROS), and the activity and expression levels of antioxidant enzymes were significantly increased. The expression of proline synthesis enzyme genes was up-regulated, and the transcripts levels of degradation genes were significantly down-regulated. The transcripts abundance of the cold stressed-related genes in the C-repeat binding factor (CBF) pathway was not significantly different between WT plants and transgenic plants after cold stress. Moreover, the PavbHLH28 could directly bind to the POD2 gene promoter and promote its gene expression. CONCLUSIONS: Overall, PavbHLH28 enhanced the cold resistance of transgenic plants through a CBF-independent pathway, which may be partly related to ROS scavenging.


Assuntos
Arabidopsis , Prunus avium , Arabidopsis/metabolismo , Resposta ao Choque Frio/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Prunus avium/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Pest Manag Sci ; 79(11): 4282-4289, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37345405

RESUMO

BACKGROUND: Several agricultural fungicides are known to affect insect pests directly and these effects may be transgenerational and mediated through impacts on endosymbionts, providing opportunities for pest control. The cotton aphid Aphis gossypii is a polyphagous pest that can cause large crop yield losses. Here, we tested the effects of three fungicides, pyraclostrobin, trifloxystrobin and chlorothalonil, on the fitness and Buchnera endosymbiont of A. gossypii. RESULTS: The formulations of trifloxystrobin and pyraclostrobin, and the active ingredient of pyraclostrobin produced dose-dependent mortality in A. gossypii, whereas there was no dose-dependent mortality for chlorothalonil. The formulations of trifloxystrobin and pyraclostrobin significantly reduced the lifespan and fecundity of A. gossypii, and increased the density of Buchnera in the parental generation but not the (unexposed) F1 . When the active ingredient of pyraclostrobin was tested, the lifespan of the F0 generation was also reduced, but the density of Buchnera was not, indicating that non-insecticidal chemicals in the fungicide formulation may affect the density of the endosymbiont of A. gossypii. There was no transgenerational effect of the active ingredient of pyraclostrobin on the lifespan and Buchnera of (unexposed) F1 . CONCLUSIONS: Our results suggest that formulations of two strobilurin fungicides have immediate impacts on the fitness of A. gossypii, and chemicals in the formulation impact the density of the primary Buchnera endosymbiont. Our study highlights the potential effects of non-insecticidal chemicals of fungicides on aphid pests and their primary endosymbionts but direct connections between fitness and Buchnera densities remain unclear. © 2023 Society of Chemical Industry.

8.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108066

RESUMO

The species belonging to the Rhododendron genus are well-known for their colorful corolla. Molecular marker systems have the potential to elucidate genetic diversity as well as to assess genetic fidelity in rhododendrons. In the present study, the reverse transcription domains of long terminal repeat retrotransposons were cloned from rhododendrons and used to develop an inter-retrotransposon amplified polymorphism (IRAP) marker system. Subsequently, 198 polymorphic loci were generated from the IRAP and inter-simple sequence repeat (ISSR) markers, of which 119 were derived from the IRAP markers. It was shown that in rhododendrons, IRAP markers were superior to the ISSRs in some polymorphic parameters, such as the average number of polymorphic loci (14.88 versus 13.17). The combination of the IRAP and ISSR systems was more discriminative for detecting 46 rhododendron accessions than each of the systems on their own. Furthermore, IRAP markers demonstrated more efficiency in genetic fidelity detection of in-vitro-grown R. bailiense Y.P.Ma, C.Q.Zhang and D.F.Chamb, an endangered species recently recorded in Guizhzhou Province, China. The available evidence revealed the distinct properties of IRAP and ISSR markers in the rhododendron-associated applications, and highlighted the availability of highly informative ISSR and IRAP markers in the evaluation of genetic diversity and genetic fidelity of rhododendrons, which may facilitate preservation and genetic breeding of rhododendron plants.


Assuntos
Rhododendron , Rhododendron/genética , Melhoramento Vegetal , Polimorfismo Genético , Retroelementos , Marcadores Genéticos , Repetições de Microssatélites/genética , Variação Genética , Filogenia
9.
Front Vet Sci ; 10: 1106807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008342

RESUMO

Introduction: Histomonas meleagridis can cause histomonosis in poultry. Due to the prohibition of effective drugs, the prevention and treatment of the disease requires new strategies. Questions about its pathogenic mechanisms and virulence factors remain puzzling. Methods: To address these issues, a tandem mass tag (TMT) comparative proteomic analysis of a virulent strain and its attenuated strain of Chinese chicken-origin was performed. Results: A total of 3,494 proteins were identified in the experiment, of which 745 proteins were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05), with 192 up-regulated proteins and 553 down-regulated proteins in the virulent strain relative to the attenuated strain. Discussion: Surface protein BspA like, digestive cysteine proteinase, actin, and GH family 25 lysozyme were noted among the proteins up regulated in virulent strains, and these several proteins may be directly related to the pathogenic capacity of the histomonad. Ferredoxin, 60S ribosomal protein L6, 40S ribosomal protein S3, and NADP-dependent malic enzyme which associated with biosynthesis and metabolism were also noted, which have the potential to be new drug targets. The up-regulation of alpha-amylase, ras-like protein 1, ras-like protein 2, and involucrin in attenuated strains helps to understand how it is adapted to the long-term in vitro culture environment. The above results provide some candidate protein-coding genes for further functional verification, which will help to understand the molecular mechanism of pathogenicity and attenuation of H. meleagridis more comprehensively.

10.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555203

RESUMO

Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.


Assuntos
Perfilação da Expressão Gênica , Prunus , Carboidratos , Flores/genética , Regulação da Expressão Gênica de Plantas , Prunus/genética , Açúcares , Transcriptoma
11.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499268

RESUMO

Polyamines (PA) play an important role in the growth, development and stress resistance of plants, and arginine decarboxylase (ADC) is one of the key enzymes in the biosynthetic pathway of polyamines. Previously, the transcriptional regulation of the 'Manaohong' cherry under the shelter covering was carried out, and the PA synthase-related genes, particularly the ADC gene, were differentially expressed as exposure to drought stress. However, the mechanisms of how ADC is involved in the response of cherry to abiotic stress (especially drought stress) are still unknown. In the present work, the full-length coding sequence of this gene was isolated and named CpADC. Bioinformatics analysis indicated that the coding sequence of CpADC was 2529 bp in length. Cluster analysis showed that CpADC had the highest homologies with those of sweet cherry (Prunus avium, XP_021806331) and peach (Prunus persica, XP_007200307). Subcellular localization detected that the CpADC was localized in the plant nucleus. The qPCR quantification showed that CpADC was differentially expressed in roots, stems, leaves, flower buds, flowers, and fruits at different periods. Drought stress treatments were applied to both wild-type (WT) and transgenic Arabidopsis lines, and relevant physiological indicators were measured, and the results showed that the putrescine content of transgenic Arabidopsis was higher than that of WT under high-temperature treatment. The results showed that the MDA content of WT was consistently higher than that of transgenic plants and that the degree of stress in WT was more severe than in transgenic Arabidopsis, indicating that transgenic CpADC was able to enhance the stress resistance of the plants. Both the transgenic and WT plants had significantly higher levels of proline in their leaves after the stress treatment than before, but the WT plant had lower levels of proline than that of transgenic Arabidopsis in both cases. This shows that the accumulation of proline in the transgenic plants was higher than that in the wild type under drought and high and low-temperature stress, suggesting that the transgenic plants are more stress tolerant than the WT. Taken together, our results reveal that, under drought stress, the increase in both expressions of CpADC gene and Put (putrescine) accumulation regulates the activity of ADC, the content of MDA and Pro to enhance the drought resistance of Arabidopsis thaliana.


Assuntos
Arabidopsis , Prunus , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Prunus/genética , Putrescina/metabolismo , Estresse Fisiológico/genética
12.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292969

RESUMO

Copper amine oxidases (CuAOs) play important roles in PA catabolism, plant growth and development, and abiotic stress response. In order to better understand how PA affects cherry fruit, four potential PavCuAO genes (PavCuAO1-PavCuAO4) that are dispersed over two chromosomes were identified in the sweet cherry genome. Based on phylogenetic analysis, they were classified into three subclasses. RNA-seq analysis showed that the PavCuAO genes were tissue-specific and mostly highly expressed in flowers and young leaves. Many cis-elements associated with phytohormones and stress responses were predicted in the 2 kb upstream region of the promoter. The PavCuAOs transcript levels were increased in response to abscisic acid (ABA) and gibberellin 3 (GA3) treatments, as well as abiotic stresses (NaCl, PEG, and cold). Quantitative fluorescence analysis and high-performance liquid chromatography confirmed that the Put content fell, and the PavCuAO4 mRNA level rose as the sweet cherry fruit ripened. After genetically transforming Arabidopsis with PavCuAO4, the Put content in transgenic plants decreased significantly, and the expression of the ABA synthesis gene NCED was also significantly increased. At the same time, excessive H2O2 was produced in PavCuAO4 transiently expressed tobacco leaves. The above results strongly proved that PavCuAO4 can decompose Put and may promote fruit ripening by increasing the content of ABA and H2O2 while suppressing total free PA levels in the fruit.


Assuntos
Amina Oxidase (contendo Cobre) , Arabidopsis , Prunus avium , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Cobre/metabolismo , Arabidopsis/genética , RNA Mensageiro/metabolismo , Poliaminas/metabolismo
13.
Front Plant Sci ; 13: 989959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061761

RESUMO

Cherries are one of the important fruit trees. The growth of cherry is greatly affected by abiotic stresses such as drought, which hinders its development. Chalcone synthase (CHS, EC 2.3.1.74) is a crucial rate-limiting enzyme in the flavonoid biosynthetic pathway that plays an important role in regulating plant growth, development, and abiotic stress tolerance. In the current study, three genes encoding chalcone synthase were identified in the genome of sweet cherry (Prunus avium L.). The three genes contained fewer introns and showed high homology with CHS genes of other Rosaceae members. All members are predicted to localize in the cytoplasm. The conserved catalytic sites may be located at the Cys163, Phe214, His302, and Asn335 residues. These genes were differentially expressed during flower bud dormancy and fruit development. The total flavonoid content of Chinese cherry (Cerasus pseudocerasus Lindl.) was highest in the leaves and slightly higher in the pulp than in the peel. No significant difference in total flavonoid content was detected between aborted kernels and normally developing kernels. Overexpression of Chinese cherry CpCHS1 in tobacco improved the germination frequency of tobacco seeds under drought stress, and the fresh weight of transgenic seedlings under drought stress was higher than that of the wild type, and the contents of SOD, POD, CAT, and Pro in OE lines were significantly increased and higher than WT under drought stress. These results indicate cherry CHS genes are conserved and functionally diverse and will assist in elucidating the functions of flavonoid synthesis pathways in cherry and other Rosaceae species under drought stress.

14.
J Gastrointest Oncol ; 13(4): 1761-1771, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36092352

RESUMO

Background: For patients with colon or stomach adenocarcinoma, 5-fluorouracil (5-FU) is an essential component of systemic chemotherapy in the palliative and adjuvant settings. The post-transcriptional regulatory factor cytoplasmic polyadenylation element-binding protein 1 (CPEB1) has been reported to be linked to tumor metastasis. This study aimed to investigate the relationship between CPEB1 expression and 5-FU treatment response in patients with colon and stomach adenocarcinomas. Methods: The expression of CPEB1 in stomach adenocarcinoma and colorectal cancer (CRC) tissues and in cell lines was determined by quantitative real-time PCR (qRT-PCR) and immunohistochemistry analyses. Transwell assays were employed to analyze the effects of CPEB1 on the migration and invasion abilities of gastric cancer (GC) and CRC cells. Results: The expression levels of CPEB1 were increased in colon and stomach adenocarcinoma and were negatively correlated with malignancy and poor patient survival. Data suggested that patients with CRC or GC who had strong CPEB1 expression responded poorly to 5-FU treatment. Furthermore, knockdown of CPEB1 inhibited the migration and invasion of CRC and GC cells via a mechanism involving decreased expression of matrix metalloprotein (MMP)2, 7, and 9. Finally, our methylated RNA immunoprecipitation PCR (meRIP qPCR) data suggested that the increased CPEB1 expression in colon and stomach adenocarcinomas might be mediated by FTO (FTO alpha-ketoglutarate dependent dioxygenase)-dependent m6A demethylation of CPEB1 mRNA. Conclusions: Our results indicate that the level of CPEB1 expression may be valuable for predicting the benefit of 5-FU treatment for patients with colon and stomach adenocarcinomas. We therefore propose that low CPEB1 expression may represent a novel biomarker for personalized 5-FU therapy.

15.
J Gastrointest Oncol ; 13(3): 1444-1453, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35837197

RESUMO

Background: Pancreatic cancer (PC) is among the most prevalent and deadliest endocrine tumors, yet the mechanisms governing its pathogenesis remain to be fully clarified. While ubiquitin-conjugating enzyme E2C (UBE2C) has been identified as an important oncogene in several cancers, its importance in PC has yet to be established. Methods: UBE2C expression in PC tumor samples and cell lines was examined via quantitative real-time polymerase chain reaction (qRT-PCR), while appropriate commercial kits were used to assess lactate production, ATP generation, and the uptake of glucose. Results: UBE2C was found to be upregulated in PC patient tumors and correlated with poorer survival outcomes. In PC cell lines, the silencing of this gene suppressed the malignant activity of cells, thus supporting its identification as an oncogene in this cancer type. Mechanistically, UBE2C was found to promote enhanced matrix metalloproteinase (MMP) protein expression via activating the PI3K-Akt pathway. Moreover, it was found to bind to the epidermal growth factor receptor (EGFR), stabilizing it and driving additional PI3K-Akt pathway activation. UBE2C knockdown in PC cells impaired their uptake of glucose and their ability to produce lactate and ATP. Conclusions: In conclusion, the results of this study support a role for UBE2C as a driver of metastatic PC progression owing to its ability to bind to EGFR and to induce signaling via the PI3K-Akt pathway.

16.
BMC Vet Res ; 18(1): 222, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690747

RESUMO

BACKGROUND: Histomonas meleagridis is an anaerobic, intercellular parasite, which infects gallinaceous birds such as turkeys and chickens. In recent years, the reemergence of Histomoniasis has caused serious economic losses as drugs to treat the disease have been banned. At present, H. meleagridis research focuses on virulence, gene expression analysis, and the innate immunity of the host. However, there are no studies on the differentially expressed miRNAs (DEMs) associated with the host inflammatory and immune responses induced by H. meleagridis. In this research, high-throughput sequencing was used to analyze the expression profile of cecum miRNA at 10 and 15 days post-infection (DPI) in chickens infected with Chinese JSYZ-F strain H. meleagridis. RESULTS: Compared with the controls, 94 and 127 DEMs were found in cecum of infected chickens at 10 DPI (CE vs CC) and 15 DPI (CEH vs CCH), respectively, of which 60 DEMs were shared at two-time points. Gene Ontology (GO) functional enrichment analysis of the target genes of DEMs indicated that 881 and 1027 GO terms were significantly enriched at 10 and 15 DPI, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp/kegg/kegg1.html ) pathway enrichment analysis of the target genes of DEMs demonstrated that 5 and 3 KEGG pathways were significantly enriched at 10 and 15 DPI, respectively. For previous uses, the Kanehisa laboratory have happily provided permission. The integrated analysis of miRNA-gene network revealed that the DEMs played important roles in the host inflammatory and immune responses to H. meleagridis infection by dynamically regulating expression levels of inflammation and immune-related cytokines. CONCLUSION: This article not only suggested that host miRNA expression was dynamically altered by H. meleagridis and host but also revealed differences in the regulation of T cell involved in host responses to different times H. meleagridis infection.


Assuntos
MicroRNAs , Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Trichomonadida , Animais , Ceco , Galinhas/parasitologia , MicroRNAs/genética , Doenças das Aves Domésticas/parasitologia , Trichomonadida/genética , Perus
17.
Ann Transl Med ; 10(6): 304, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35433957

RESUMO

Background: Gemcitabine is among the most commonly utilized chemotherapeutic agents for treating pancreatic cancer (PC), yet patients ultimately develop chemoresistance and thus exhibit a poor prognosis. Long noncoding RNAs (lncRNAs) can function as key regulators of PC progression and may serve as prognostic biomarkers in individuals with gemcitabine-resistant PC. This study sought to explore the role of the lncRNA DBH-AS1 in this oncogenic setting. Methods: Based on public databases and qRT-PCR analyses the expression of lncRNA DBH-AS1 in PC tissues and cell lines. The effects of lncRNA DBH-AS1 on proliferation and gemcitabine resistance were determined by in vitro and in vivo experiments. Luciferase reporter assay and RNA immunoprecipitation (RIP) were carried out to reveal the interaction between lncRNA DBH-AS1, miR-3163 and USP44. Results: We found that PC tissues exhibited DBH-AS1 downregulation that was particularly pronounced in gemcitabine-resistant PC tissues and cells. This DBH-AS1 downregulation was negatively correlated with the malignancy of PC tumors and with patient survival outcomes. Additionally, decreased DBH-AS1 expression in PC was found to be linked to the METTL3-dependent m6A methylation of the lncRNA, with functional analyses revealing that DBH-AS1 was able to suppress the growth of PC cells. Mechanistically, DBH-AS1 was able to increase PC cell sensitivity to gemcitabine by sequestering miR-3163 and thus upregulating USP44 in these tumor cells. Clinically, patient-derived PC tumor xenografts exhibiting high levels of DBH-AS1 expression were found to be responsive to gemcitabine treatment. Conclusions: Overall, these data underscore a key role for DBH-AS1 as a regulator of PC tumor growth and a promising therapeutic target capable of predicting PC patient responsiveness to gemcitabine treatment.

18.
World Neurosurg ; 163: e98-e105, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35314410

RESUMO

OBJECTIVE: Basilar invagination usually shows a decrease of clivus axis angle (CAA), which could give rise to progressive neural compression. Exploring a safe and effective fixation technique to achieve atlantoaxial stability and neural decompression remains necessary. In this study, we introduce a modified posterior C1-C2 distraction and fixation technique by which we obtained indirect ventral neural decompression and atlantoaxial stability in a series of patients with decreased CAA. METHODS: Thirty patients of basilar invagination were enrolled in our series. All patients underwent thin-slice computed tomography (CT) scan, magnetic resonance imaging, and dynamic plain radiography examinations before surgery, at discharge and during the follow-ups. Posterior C1-C2 facet joint release and intraoperative reduction by fastening rods were performed in all patients. The CAA was measured on midsagittal CT scans. Patients' neurologic status was evaluated by the Japanese Orthopaedic Association score. RESULTS: No neurovascular injury and serious postoperative complication occurred in all patients. Complete ventral brainstem decompression was achieved in 20 patients and partial in 10 patients. The mean postoperative CAA significantly improved to 132.6 degrees compared with the preoperative 123.6 degrees (P < 0.01). The bone fusion was confirmed in all patients on the basis of the last follow-up spine CT scans. CONCLUSIONS: Indirect ventral brainstem decompression by posterior C1-C2 distraction and fixation is a safe and effective technique for treatment of basilar invagination.


Assuntos
Articulação Atlantoaxial , Luxações Articulares , Platibasia , Fusão Vertebral , Articulação Atlantoaxial/diagnóstico por imagem , Articulação Atlantoaxial/lesões , Articulação Atlantoaxial/cirurgia , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/cirurgia , Descompressão Cirúrgica/métodos , Humanos , Luxações Articulares/cirurgia , Platibasia/diagnóstico por imagem , Platibasia/cirurgia , Fusão Vertebral/métodos
19.
Ann Transl Med ; 10(2): 40, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282134

RESUMO

Background: N6-methyladenosine (m6A) is the most frequent internal methylation of eukaryotic RNA (ribonucleic acid) transcripts and plays an important function in RNA processing. The current research aimed to investigate the role of m6A-STIM2 axis in cholangiocarcinoma (CCA) progression. Methods: The expression of STIM2 (Stromal Interaction Molecule 2) in CCA was measured using quantitative polymerase chain reaction (PCR) and immunohistochemistry (IHC). STIM2 was examined in vivo for its effects on the malignant phenotypes of CCA cells. The m6A modification of STIM2 was assessed through MeRIP (methylated RNA Immunoprecipitation)-PCR. Results: Based on the GEPIA (Gene Expression Profiling Interactive Analysis) 2 database findings, a low STIM2 mRNA (messenger RNA) level was related to a poor prognosis in individuals with CCA. Quantitative PCR and IHC assays indicated decreased protein satin in CCA tissues and were associated with extrahepatic metastasis. Vianude mice tail vein injection model indicated that increased STIM2 levels suppressed CCA cell metastasis in vivo, while KRT8 (keratin 8) was detected as the direct downstream target of STIM2-mediated CCA cell metastasis in vivo. Meanwhile, based on SRAMP database and MeRIP assays indicated that m6A alteration resulted in abnormal STIM2 expression in CCA via METTL14 and YTHDC2. Conclusions: Our findings revealed the epi-transcriptomic dysregulation in CCA and metastasis by proposing a complicated STIM2-KRT8 regulatory paradigm based on m6A alteration.

20.
Hum Cell ; 35(2): 498-510, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35015267

RESUMO

Circular RNAs (circRNAs) play important roles in the progression of hepatocellular carcinoma (HCC). However, the exact function of circ_0008934 in HCC is unknown. Our study aimed to investigate the expression characteristics of circ_0008934 in HCC and its effects on the proliferation and metastasis of HCC, and to explore the potential mechanism. In this study, circ_0008934 expression was found to be significantly upregulated in HCC tissues and cell lines by qRT-PCR. High level of circ_0008934 is closely associated with higher serum AFP (P < 0.001), larger tumor diameter (P = 0.012), microvascular invasion (P = 0.008) and poorer prognosis (P = 0.007) of HCC patients. Functionally, knockdown of circ_0008934 inhibited HCC cell proliferation, invasion and migration in vitro and vivo. Mechanically, circ_0008934 was a sponge of miR-1305 to facilitate the TMTC3 expression, and the TMTC3 expression in HCC tissues was negatively associated with the survival of HCC patients. Furthermore, rescued assays revealed that the circ_0008934 facilitated HCC proliferation, invasion and migration by regulating miR-1305/ TMTC3 signaling pathways. Overall, these results demonstrate that downregulation of circ_0008934 repress HCC growth and metastasis by upregulating miR-1305 to inhibit TMTC3, suggesting circ_0008934/ miR-1305/ TMTC3 regulatory axis may be a possible novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...